Ridge estimation for multinomial logit models with symmetric side constraints

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multinomial logit models with implicit variable selection

Multinomial logit models which are most commonly used for the modeling of unordered multi-category responses are typically restricted to the use of few predictors. In the high-dimensional case maximum likelihood estimates frequently do not exist. In this paper we are developing a boosting technique called multinomBoost that performs variable selection and fits the multinomial logit model also w...

متن کامل

Fast Estimation of Multinomial Logit Models: R Package mnlogit

We present the R package mnlogit for estimating multinomial logistic regression models, particularly those involving a large number of categories and variables. Compared to existing software, mnlogit offers speedups of 10–50 times for modestly sized problems and more than 100 times for larger problems. Running in parallel mode on a multicore machine gives up to 4 times additional speedup on 8 p...

متن کامل

Estimation of multinomial logit models in R : The mlogit Packages

mlogit is a package for R which enables the estimation the multinomial logit models with individual and/or alternative specific variables. The main extensions of the basic multinomial model (heteroscedastic, nested and random parameter models) are implemented.

متن کامل

Estimation of multinomial logit models in R : The mlogit Package

mlogit is a package for R which enables the estimation of the multinomial logit models with individual and/or alternative specific variables. The main extensions of the basic multinomial model (heteroscedastic, nested and random parameter models) are implemented.

متن کامل

Multinomial logit random effects models

This article presents a general approach for logit random effects modelling of clustered ordinal and nominal responses. We review multinomial logit random effects models in a unified form as multivariate generalized linear mixed models. Maximum likelihood estimation utilizes adaptive Gauss–Hermite quadrature within a quasi-Newton maximization algorithm. For cases in which this is computationall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Statistics

سال: 2012

ISSN: 0943-4062,1613-9658

DOI: 10.1007/s00180-012-0341-1